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INTRODUCTION

In evaluating wave force on cy1inder, the Parison's formula is often

used. That is, wave force is assumed to consist of two parts. The

first part, referred to as the inertia force, is linearly proportional to

fluid particle acceleration. The second part, referred to as the drag

force, is proportional to the square and in the direction of fluid parti-

cle veloci tI.

Due to fluctuation of the free surface, points on the cylinder may ris.

above or fall below the water surface. At instants when the point is not

submerged, it experiences no wave force. Thi s i s recognized, in the case

of single wave  Ippen, 1966!. For random waves, however, such considera-

tion has so far been ignored  Borgman, 1971!,

It is the purpose of this paper to derive expressions for same statis-

tical quantities of wave field kinematics and wave forces on'e1ements of

a vertical cylinder in a random wave field with due regard to the phenomenal

mentioned above and to examine its effects an these quantities. Specifical'ly,

expressions for the mean and standard deviation of horizontal component of

fluid particle velocity, acce1eration and wave farce on element of cylinder

are derived. Numerical results are obtained for these quantities and

presented graphically. For simplicity, only the case of unidirectional

gravity wave field in deep water is considered.

SPECIFICATION OF THE RANDOM SEA

The description af a random wave field has been discussed by many authors

 Bargman, 1971, Phillips, 1969!. For easy reference, a brief su+vary is

given below.



Consider a coordinate system with the z axis directed vertically up-

ward and origin at the equilibrium surface. The position of the free

surface is specified by z = q x,t! in which x is the horizontal position

coordinate in the direction of the waves and t is time. It is assumed

that n x,t! is a zero mean, Gaussian random process stationary in time

and homogeneous in space and can be represented as  Phillips, 1969,

Huang, l9

i  kx-nt!q x,t! =

in which i is the imaginary unit, dB k,n! is a zero mean complex random

function of wave-number k and frequency n. The integration in Eq.  l!

is over all wave-number, frequency space in the gravity wave range. It

can be shown that

ELdB k,n! dB*  k,n!j = o if krak', n0n'
�!

= X k,n! dkdn if k = k', n = n'

in which dB*   ~ , ~ ! is the complex conjugate of dB  , ~ !, E[-j is the expected

value of the random quantity enclosed in the bracket and X k,n! is the

wave-number, frequency spectrum of the surface waves.

Under the assumptions that the fluid is inviscid, incompressible

and the motion of the wave field is irrotational the associated velocity

potential y x,z,t! that satisfies Laplace's equation

CI  x,z,t! = 02

together with the lineari zed kinematic and dynamic boundary conditions is

given, in deep water, by  Huang, l97l!



lklz i kx-nt!
g x,z,t! = -i - dB k,n! e e �!

in which the frequency

n = + gk!'~'

g being gravi tational accel era tion.

The horizontal components of fluid particle velocity and acceleration

are respectively given by  Huang, 1971!

Y x,z,t! =
ax

�!dB k n! elklz e i kx-nt!

n

and

A x,z,t! =

�!2k dB k n! elk[z i kx-nt!

correct to the first order of approximation.

it is recognized that, to this order, Y x,z,t! and A x,z,t! are zero

mean, Gaussian, stationary in time and homogeneous in space and Eqs. �!

and �! holds everywhere below the free surface. Stated explicitly, the

horizontal components of fluid particle velocity and acceleration should

be expressed as
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9 x,z,t! = Y x,z,t! H  n x,t! -z!  8!

and

A x,z,t! = A x,z,t! H  n x,t! -z!  9!

MEAN AND STANDARD DEVIATION

OF WAVE FIELD KINEMATICS

In subsequent derivation of the mean and standard deviation, for

brevity, the arguments z,x, and t in the quantities n x,t!, V x,z,t!,

V x,z,t!, A x,z,t! and A x,z,t! are dropped.

To obtain the mean of 5, take the expected value of both sides of

Eq.  8!. That is

E[v] = E[VH <-z!].  lo!

Eq. �! can be written as  Papoulis, 1965!

E[V] = E[VH n-z!] = E[H v-z!E[V n]]

in which E[ [-] is conditional expected value. Noting that Y and q

are jointly Gaussian,  Papoulis, 1965!

in which H  ~ ! is the heaviside unit function. From Eqs.  8! and  9!

it is inmediate'Jy clear that the horizontal components of fluid particle

velocity and acceleration, being nonlinear functions of Gaussian pro-

cesses, are no longer Gaussian. The difference between the representa-

tion of wave field kinematics given by Eqs.  B! and  9! and that by

Eqs. �! and �!, accounts for the significant discrepancy observed in

the statistical properties of these quantities to be discussed later in

the paper. It is to the derivation of the mean and standard deviation

of the quantities V x,z,t! and A x,z,t! that the next section is devoted.



-5-

EI'.Yln] =  ra� /a !n

in which cr and a are respectively standard deviations of E! and Y
v

given by

 »!

 ! = L S n!dn]' '

and

L 2S n! 2lklz dn]l/2
v  l4!

/n/S n! e ~ ~ dn.
n v

 ls!

Substituting Eq.  '12! into Eq. �1!,

rcr

E l!] = " Et.H T!-z!E!].
n

 l6!

mean Gaussian whose probability density function is

2

exp - ~n!
20

Since n is zero

f  <! =
2nv

the expected value

E[H z+n!n! = J H n-z!nf  n!dn
n

I nf  n!dn= n E  !
n

z

 ls!

as can be derived from Eqs. �! and �! together with Eq. �!, S n! is

the frequency spectrum of the surface waves, In Eq.  l2!, r is the

correlation coefficient of V and n
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in which

2
exp - ~!.

2
z c! = �9!

Thus,

ELV] = r.VZ  � '!.
n

�O!

The standard deviation of 9 may be obtained from the mean square

E[9 ] of V which can be determined by squaring both sides of Eq.  8!

and taking their expected values. That is,  Papoulis, 1965!

EL%I ] = ELV H .-z!] = E[H .-z!E[y 1.!]2 2 2 �1!

in which  Papoulis, 1965!

�2!E[y I,] = 'Vl, ' 'V2 2 2

The quantities m�~ and c7VI are respectively the conditional mean and
standard deviation of V given v

m = E[yin] =  rv ~ !nVin V �3!

as given in Eq. �2!, and

2 1/2y -r! �4!

Using Eqs. �2!, �3!�and �4!, Eq. �1! becomes

2 2

E[|t ] Gy � r ! E[H n-z!] + � 2 E[n H n-z!]2 2 2 V 2 �5!

It is noted here that E[V! is a fi~st order quantity and as z approaches

negative infinity, E[P] = 0.



E[H n-z!] = Q  ! �6!

in which

Q u! = Z C! dC

u

�7!

and

EI:~ H n-z!] = a L,' Z ,' ! +Q  ', !].
n n

�8!

The expression for ELU ] is therefore, from Eq. �5!,2

z z
Lq2] = a2 LQ  z ! +r2 Z

n n

�g!

and the standard deviation a of V is
V

a = {E[V ] - E LV]! �o!

It is seen that as z approaches negative infinity, E['II ] approaches2

2aY and withE[Y] becoming vanishingly small, c converges to vY

The mean of A is obtained from Eq.  9!. That is

EL%] = E[AH q-z!].

Since A and q are Gaussian and uncorrelated with each other, as can be

verified from Eqs.  '1! and �!, they are statistically independent. Thus

The expected values E/H n-z!] and ELn H n-z!] can all be readily determined2

using Eq.  l7!. That is,



 Papoulis, 1965!.

E[A] = E[A]E[H n-z!]. �2!

But, from Eq. �!, E[A] = 0, giving

E[A] = O. �3!

The mean square value of A can also be obtained simply from Eq.  9!

using the same argument leading to Eq. �2!. That is,

ELK ] = E[A H n-z!] = E[A ] E[H n-z!]

AQ ,'! �4!

in which, OA is the standard deviation of A, and, from Eq. �!,

�5!

With the mean E[A] = 0, the standard deviation cr
A

of A is

=  EP2]!l/2
A

�6!

Again, i t is observed that a approaches aA when the point under
A

consideration is far below the mean water level.

MEAN AND STANDARD DEVIATION OF WAVE FORCE

�7!P x,z,t! = CD VlVIH n-z! + CMAH n-z!

According to Morison's formula, the wave force on an element of a

vertical cylinder, of unit length, located at z distance from equilibrium

surface is



2

in which CD = pk 0, C = pkM, k and k< are respectively dragrrD

and inertia coefficients, p is density of water and 0 is diameter of the

cylinder ~ This expression of wave force differs from

F x,z,t! = CDV fy  + Cg �8!

that is ordinarily used  Borgman, 1965! in that in Eq. �7! the

heaviside unit function is introduced.

The mean value of I-'  arguments x,z, and t are again dropped for

brevity! is, from Eq. �1!,

E[<] = Cp E[V / V / H n-z!] + CUE[AH n-z!] ~ �9!

In Eq. �9!, the second expected value on the right hand side is equal to

zero  Eq. �3!!. The term E[yty~H n-z!] is  Papoulis, 1965!

E[VIVIH n-z!] = E[H n-z! E[V �O!

But

2[V V/ nj = f V/V/fV~  V!dV �1!

in which fyI  V! is the conditional probability density function of
V n

y given n  Papoulis, 1965!
V-m

exp[ 1 [ ~Vn ~2g
2

Jeer 'V! VIP
�2!fy   v!

my / and a > being given by Eqs . �3! and �4! . Substi tutingV n V  f[

Eq. �2! into Eq. �1! and carrying out the integration by parts,

2 2

E[y I V ] '2i] yI [2>Z >! + 2Q ~! -l] + 4my / y f Z ~! 2 y ~ Q >! 43!
2

-my  
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in which

A = -my] /Uy �4!
� 2	/2.

From Eqs. �3! and �0!,

CO 22[V ll H n-z!] = f H n- z! [n �xZ z! + 2Q z!-! ! + 4m n Z x! +Vjn V]n yf<

2VIn x! "Vt n n!dn �5!

in which, it is noted that X and my~ are both functions of n.
V n

Integrating Eq. �5! by parts,

ELVA VJH n z!] <y   Q  ! +2L� r + 2r l r ! Z 2 3 z 2 1/2 z

~ �-

+ r Z  ! L2Q 
n 0

�6!

in which  Abramowitz, 1968!

L a,b,r! = t Z g!dg / Z y!dy; w = �7!

It can be verified that ELV V H n-z!] and hence ELF] approaches

EIF] = 0  Borgman, 1965! as z becomes increasingly large.

The mean square value E[I- ] of F is, from Eq. �7!,2

EI.F ] = C~ELV H n-z!] +C!!E5A H n-z!] + 2C0C~EEVIVIAH n-z!] �8!

�9!

The third term on the right hand side of Eq. �8! is  Papoulis, 1965!

ELVJV/H <-z!]ELA] = 0



was carried out. That is,

E[V H n-z!! = E[H n-z!ELV n]].
� 4 4

But  Papoulis, 1965!

n! = j < t,   u!d r = 3 � 4 4 4 2 2 4

Therefore,

E[V H n z!] H n z! �0y + 60y Illy + my ! f  n!dn4 4 2 2 4
yn yn yn VT  n

 T [3g  ! + Z  ! r �+ r -3r !].
n n n 0

n

�2!

Substituting Eq. �2! and Eq. �4! into Eq. �8!, the quantity

E[P ] is obtained and the standard deviation o of F is given by2

 E[P2] - E2[F] ! 1 /2
F

�3!

Far below the mean water level, the quantities E[A H n-z!] and E[V2 4

H n-z!] in Eq. �8! respectively approach aA and 3ay giving, a2 4

Dy NA
2 2 4 2 2

which concurs with the expression of E[F ] previously derived by

Borgman  Borgman 1965!.

 S4!

since E[A] = 0. The term E[A H n-z!] is given by Eq. �4!. The2

remaining term to be evaluated in Eq. �8! is ELV H n-z!] which can be4

done in much the same manner as the term E rr!rr  rr zen!! in En. �>!



-12-

NUMERICAL RESULTS

Numerical results are obtained for all the quantities discussed

above. The frequency spectrum S n! is taken to be that of the one-

s ided Ki taigorodski i-Pi erson-Moskowi tz spec trum

2 n
s n! = + expL'-g  ! !

Il
n

�5!

in which c! = 0.81 X 10, 8 = 0.74, n = g/W, W being the mean wind

speed. The cut-off frequency for S n! is determined from the condition

E <Ivhn x,t!j >«1,  Phillips, 1960! in which vh denotes horizontal1/2 2

gradien t.

For wave force computations, the values of k> = 1.4, kD = 0.5,

p = 2.0 0-s /ft.ft and 0 = 1 ft are used. The value of W = 40
2 3

miles per hour is chosen for all the computations in this study.

Figure 1 gives the quanti ties ELV], a , a together with a>
P

and aA as function of z. It is seen that E[P] becomes insignificantly
small for IzI>3a . Also, a and a coincide respectively with aV and

P A

A when z<-3a but deviate drastically from a> and aA as the point is
n

above and farther removed from the mean water level. More significantly,

while a and a converge to zero as z approaches infinity, a> and a
P

diverge indefinitely.

that ELFj approaches zero less rapidly as z approaches negative infinity.

Examination of a and aF indicates that the two quantities converge

In Figure 2, the quantities ELF], a and a are presented as function

of z. ELF] exhibits the same characteristics as E[P] in Figure 1 except
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when the element under cons1deration is far below the mean water level but

they diverge from each other as the element is above and away from the

mean water level.

CONCLUDING REMARKS

Results of th1s investigation indicates that, in a random wave

field, when wave kinematics and wave force are expressed as given in

Eqs,  8!,  9! and �7!, taking into account the possibility that the

point under consideration may rise abave the water surface,

l. the mean values of horizontal component of fluid particle velocity

and associated wave force are non-zero except when the point is

far removed from the mean water level, and

2. the standard deviations of horizontal flu1d particle velocity and

accelera tion and associated wave force deviate from those commonly

used to an appreciably extent. The departure is neglegible at

points far below the mean water level but beomes significant

around and above the mean water level.

In as much as most of the water movement in a wave field is concentrated

around and above the mean water level at which the discrepancy observed

above is most pronounced' the results of this study has obvious implica-

tions in design considerations of mar1ne structures that protrude above

the water. In this connection, it should be mentioned that while vorticity,

nonlinear wave-wave interactions all affect water movement, these effects

are of higher order. The results of th1s study, based on potential theory.,

carried to first order should therefore be considered generally satis-

factory  Kinsman, 1965!.

For simplicity, only unidirectional deep water waves are considered.

However, resul ts can be obtained without undue difficulty and the general

characteristics of the quantit1es examined here are bel1eved to hold, for

direc tional and intermediate water waves as well.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:

A x,z,t!, A x,z,t! = horizontal component of fluid particle acceleration
 Eqs. �!  g!!'

a = argument  Eq. �7! !;

b = argument  Eq. �7!!;

C , C = coefficients  Eq. �7!!;

0 = diameter of cylinder;

dB k,n!, dB* k,n! = complex random function and its complex conjugate
 Eqs  l! �!!'

E[ ~ j = expected value of random quantity enclosed in the bracket;

F x,z,t!, I. x,r,t! = wave force on element of cylinder  Eqs. �7!, �8!!;

f   ~ ! = probability density function of surface elevation n x,t!

fV~   ~ ! = conditional probability density function of V x,z,t! given
n x,t!  Eq. �2!!;

g = gravitational acceleration;

H  ! = Heaviside unit function;

i = imaginary unit;

k,k' = wave-number;

kD,k< = drag and inertia coefficients  Eq. �7!!;

L, a,b,r! = function defined in Eq. �7!;

mV~ = conditional mean of V x,z,t! given n x,t!  Eq. �3!!;V q

n,n' = frequency;

n, = gee  Eq. �S!!;

g  ~ ! = function defined in Eq. �7!;

r = correlation coefficient of V x,z,t! and q x,t!  Eq. �5!!;

S n! = frequency spectrum of surface elevation;

t = time;
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u = dummy variable;

V x,z,t!, l x,z,t! = horizontal component of fluid particle velocity
 Eqs. �!,  8!!;

H = mean wind speed  Eq. �5!!;

w = dumpy variable;

X k,n! = wave-number, frequency spectrum of surface elevation;

x = horizontal position coordinate;

y = dumpy variable;

Z  ! = function defined in Eq. �9!;

z = vertical position coordinate;

a,g = constants appearing in Eq. �5!;

vh = horizontal gradient;

q x,t! = surface elevation  Eq. �!!;

x = quantity defined in Eq. �4!'

< = dumpy variable;

p = density of water  Eq. �7!!;

a = standard deviation of the quantity in the subscript;

a>I = conditional standard deviation of V x,z,t! given n x,t!; and
Y n

! x,z,t! = velocity potential  Eq. �!!.
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